Quantum wells in Nanowires for Optoelectronic Applications: Materials and Devices

Date: 25th November 2021
Time: 11:00am - 12:00pm AEDT
Location: Online

III-V compound semiconductor nanowires (NWs) have drawn much attention as nanoscale building blocks for integrated photonics/optoelectronics due to their nanoscale size, excellent optical properties and effectiveness in strain relaxation enabling the monolithic growth on lattice-mismatched substrates. In particular, NWs grown by selective area epitaxy technique have many advantages such as controllability of their size and position, high uniformity in diameter and length, as well as complementary metal-oxidesemiconductor (CMOS) process compatibility, facilitating their integration with other electronic devices.

With suitable wavelength ranging from 1.3 to 1.6 μm and lattice match of constituent materials, InGaAs/InP quantum well (QW) has been being widely used for optical communication devices. However there has been limited understanding on the growth of InGaAs/InP QW in nanowire architecture and their application for optoelectronic devices.

In this work, we present the study of the selective area epitaxy growth of InGaAs/InP multi-QW NW arrays by metalorganic chemical vapour deposition (MOCVD) technique, and the demonstration of nanowire LEDs/lasers and photodetectors with an investigation of their strong geometry related device properties by both numerical simulation and optoelectronic characterizations.


Professor Lan Fu received her PhD degree from the Australia National University (ANU) in 2001 and is currently a Full Professor at the Research School of Physics, ANU. Prof. Lan Fu was the recipient of the IEEE Photonic Society Graduate Student Fellowship (2000), Australian Research Council (ARC) Postdoctoral Fellowship (2002), ARF/QEII Fellowship (2005) and Future Fellowship (2012). Professor Fu is a senior member of IEEE, IEEE/Photonics and Electron Devices Societies and was the past chair of the Photonics Society, Electron Devices Society and Nanotechnology Council Chapters of the IEEE ACT section. She is the current Chair of IEEE Nanotechnology Council Chapters & Regional Activities Committee, Associate Editor of IEEE Photonics Journal, and member of Editorial Board of Opto-Electronic Advances. She is also the current member of the Australian Academy of Science National Committee on Materials Science and Engineering, Secretary of the Executive Committee of Australian Materials Research Society (AMRS), and Australian Research Council College of Experts. Professor Lan Fu’s main research interests include design, fabrication and integration of optoelectronic devices (LEDs, lasers, photodetectors and solar cells) based on low-dimensional III-V compound semiconductor structures including quantum wells, self-assembled quantum dots and nanowires grown by metal-organic chemical vapour deposition (MOCVD).