Nonlinear and Electro-Optic Metal-Oxides for Sensing and Telecom Devices

Date: 6th April 2022
Time: 2:00 pm - 3:00 pm
Location: Online, AEST
Online | TMOS Colloquium

Nonlinear and electro-optic devices are present in our daily life with many applications: light sources for microsurgery, green laser pointers, or modulators for telecommunication. Most of them use bulk materials such as glass fibres or high-quality crystals, hardly integrable or scalable due to low signal and difficult fabrication. Generating nonlinear or electro-optic effects from materials at the nanoscale can expand the applications to biology and optoelectronics. However, the efficiency of nanostructures is low due to their small volumes.

Here I will show several strategies to enhance optical signals by engineering metal-oxides at the nanoscale with the goal of developing nonlinear and electro-optic photonics devices for a broad spectral range. We use metal-oxides such as barium titanate (BTO) and lithium niobate (LNO) as an alternative platform for nanoscale nonlinear photonics. Recently, we focused on bottom-up assemblies of BTO nanoparticles to obtain electro-optic metasurfaces and quasi phase matching effects.

The field of metal-oxides at the nanoscale has a huge potential of applications in nanophotonics, integrated optics and telecommunication.

Rachel Grange is an associate professor in integrated optics and nanophotonics in the Department of Physics at ETH Zurich. She has been assistant professor at ETH Zurich since 2015. From 2011 to 2014, she was junior group leader at the Friedrich Schiller University in Jena, Germany.  During her post-doc at EPFL, she worked on nonlinear bioimaging with metal-oxides nanoparticles from 2007 to 2010. She received her Ph.D. in 2006 from ETH Zurich on ultrafast laser physics.